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Abstract—The Internet of Things (IoT) promises to allow
everyday objects to connect to the Internet and seamlessly
interact with users and other machines. For this vital Internet
connection, most current IoT devices use a personal gateway
device such as a smartphone or a home WiFi access point.
The necessity of configuring and maintaining these gateways
presents an additional burden for both users and developers of
IoT applications. Our vision for IoT connectivity is to eliminate
the need for the personal gateway by developing crowdsourced
low-power wide area networks (csLPWAN). Recent technologies
such as RPMA, LoRa, and R-FDMA enable links to reach 15km
using ISM-band transceivers, making csLPWANSs an attractive
option. In this paper, we investigate the practicality of csLPWANs
and develop the first csLPWAN planning tool, Planlt, which
combines topography-aware RF signal analysis with demographic
data to predict LPWAN coverage in specific geographic areas.
Using Planlt, we find that most cities achieve 99% coverage by
deploying a single LPWAN base station within the city. To provide
better service on the csLPWAN, we propose and evaluate DQ-
N, a near-optimal MAC protocol to enable efficient bandwidth
sharing in highly utilized networks. In the future, csLPWANs
could accommodate a heterogeneous set of IoT applications,
simplifying the IoT application development cycle, reducing total
system cost, improving application reliability, and enhancing the
user experience.

I. INTRODUCTION

The Internet of Things (IoT) continues to grow as a new
paradigm in which information and communication systems
are embedded in our surroundings, enabling new services
and applications. This paradigm has been applied in various
application domains including intelligent healthcare, environ-
ment monitoring, precision agriculture, and smart cities. The
IoT ecosystem spans monitoring, storage, communication,
and analytical tools. However, creating a scalable and robust
communication system for IoT is essential for success [1].

In typical applications, the IoT device stores data locally and
then periodically communicates to the cloud via a gateway de-
vice. Gateway devices could be smartphones, stationary WiFi
access points (AP), or cellular networks. Low-power commu-
nication between the IoT device and gateway device using
standards such as Bluetooth, ANT+, Zigbee, IEEE 802.15.4,
or IEEE 802.11 (WiFi) achieve a maximum communication
range typically less than 100 meters. To achieve longer range
communication, cellular networks have historically been the
only option. This solution is relatively expensive and power
hungry as cellular networks were not designed to support
IoT devices. Emerging network standards aimed at optimized

cellular networks for IoT devices are in various development
stages (e.g., LTE-M, NB-IoT, EC-GSM-IoT, etc.), however,
these are not yet widely deployed.

Recently, several long-range low-power wireless technolo-
gies have been developed including RPMA, LoRaWAN, and
R-FDMA (Section II) to address the IoT connectivity problem.
These wireless standards claim between 5 km to 15 km
communications range using shared spectrum in the ISM
bands at low data rates, typically 1 kbaud or less. While
still less than the 35 km to 100 km range made possible by
higher power cellular radios operating in assigned frequency
bands [2], these technologies nevertheless enable the creation
of low-power wide-area networks (LPWANS).

In this paper, we propose crowdsourced LPWANs (csLP-
WANS) as a solution to the IoT connectivity problem and an-
alyze how they would perform in various demographic regions
of the United States. We define a csLPWAN as any LPWAN
where the base stations are randomly deployed by users of
the system rather than deployed in a coordinated fashion by a
network operator. As several vendors roll-out private LPWAN
networks using fixed infrastructure (e.g., SIGFOX, Ingenu), we
demonstrate that csLPWANSs are a viable alternative solution
for providing IoT device connectivity.

In our preliminary analysis of existing LPWAN protocols
(Section II), we discovered that these technologies rely on
relatively simple contention-based MAC protocols which have
a well-known utility upper bound of 36.8% [3]. Enhancements
can be made to increase the channel utility at the cost of
increasing energy consumption, latency, and computational
overhead. Still, with bursty traffic patterns, this class of
protocols suffers high contention penalty and latency [4]. The
common solution is to design for low channel utility by em-
ploying complex multichannel gateways increasing available
bandwidth (e.g., [5]). This is less attractive for constructing
a csLWPAN as incentivising users to operate complex and
expensive gateways could be challenging. This suggest that for
csLWPANSs there is an additional constraint that base station
nodes should be low-cost devices similar to the IoT device
nodes themselves.

To meet this challenge, we propose a new MAC protocol,
DQ-N, for csLPWANS that supports thousands of nodes from
a single low-cost gateway node. The protocol is inspired by
distributed queueing and LPDQ [6], [7]. DQ-N provides near-
optimal channel utility and latency characteristics. It supports



thousands of devices within the assigned network simultane-
ously and is immune to bursty traffic. These optimizations
enable the creation of efficient csSLPWANs using commercially
available low-cost LPWAN radios.

We envision users deploying public access csSLWPANs
nationwide, allowing multiple heterogeneous IoT applications
to share a common and secure data network. This will simplify
the IoT application development cycle, reduce costs, improve
application reliability, and enhance the user experience.

The contributions of our paper are:

1) Planlt, a realistic IoT network simulation and planning
tool using both geographic and demographic information,

2) csLPWAN coverage analysis for Pennsylvania showing
most cities can achieve 99% connectivity from a single
crowdsourced (randomly located) base station,

3) and DQ-N, a near-optimal channel utility and latency
MAC protocol for LPWAN networks that supports thou-
sands of nodes with a single base station.

The structure of paper is as follows: in Section II we sum-
marize prior work; in Section III we present Planlt, a realistic
LPWAN network planning tool with results covering all cities
in Pennsylvania; in Section IV we present our improved DQ-N
protocol for csLPWAN communication, including evaluation
against other relevant protocols; and in Section V we present
conclusions and future work.

II. RELATED WORKS

Ingenu (previously On-Ramp Wireless) designed a propri-
etary protocol called Random Phase Multiple Access (RPMA)
for wide area networks. RPMA is a variation of CDMA [8].
After selecting a transmission slot, the transmitter performs
a random delay. As long as two transmissions do not arrive
simultaneously, RPMA allows correct decoding [9]. As with
other contention-based MAC protocols, when the network load
increases collisions will be more frequent, causing a reduction
in the available network bandwidth. Ingenu is actively de-
ploying private RPMA networks and claims to be the world’s
largest IoT network provider [10].

The LoRa Alliance specifies LoRaWAN, a protocol de-
signed for low-cost IoT networks [11]. The physical layer of
LoRaWAN uses Chirp Spread Spectrum modulation (CSS).
CSS is very useful to recover data from weak signals,
increasing the effective range of LoRaWAN transmissions.
However, the MAC layer is very lightweight and essentially
implements pure-ALOHA with Listen-Before-Talk, resulting
in low channel utility under high traffic load due to packet
collisions. Commercial LoRaWAN radios are widely available
and implement the LoORaWAN MAC in software. Replacing
the LoORaWAN MAC layer while keeping the CSS physical
layer is an attractive option for developing csLPWAN equip-
ment.

Random-FDMA (R-FDMA) has been developed with the
goal to minimize the manufacturing cost for IoT devices [5].
By using ultra-narrow band transmitters and sophisticated
wideband base stations, R-FDMA allows each IoT device
to transmit using a random frequency. Although the lack of

contention resolution introduces the possibility of interference
within the same channel when two users are transmitting
simultaneously, R-FDMA does not impose any constraints on
how the node chooses an operating frequency. It is typically
set in manufacturing allowing relaxed oscillator stability con-
straints. R-FDMA depends on each ultra-narrow-band channel
being lightly utilized and forgoes typical medium access
control mechanisms. This design simplifies device nodes but
requires a more sophisticated base station to receive the
random frequency signals. A typical R-FDMA base station
would be implemented using a software defined radio (SDR) to
sample the available spectrum and then perform all RF signal
processing in software. This requires significant bandwidth
between the SDR and host processor and enough processing
power to process the received signal in real-time. Until a
low-cost base station platform is developed, R-FDMA is less
attractive for csLPWANS.

In the distributed queuing (DQ) literature, there are several
recent attempts to adopt DQ into the IoT domain, most notably
LPDQ [7], [12]. Both simulation and real world experiments
demonstrate the superiority of DQ over ALOHA-based MAC
protocols such as CSMA in terms of latency and throughput.
LPDQ also has its own time synchronization and frequency
hopping mechanisms. However, LPDQ is designed for high-
frequency, higher-bandwidth wireless links and is not intended
for low-rate IoT networks. As we will demonstrate in this
paper, in a low data rate environment, the protocol overhead
adversely affects the channel utility. In addition, LPDQ suffers
larger latency under bursty traffic, as discussed in Section IV.
Finally, LPDQ only supports upstream packets, which may be
unacceptable in some IoT applications.

Low-power IoT coverage planning and network simulation
are emerging topics [13]-[16]. B. Reynders et.al simulated
both the physical and MAC layer for low-power networks in
a square arrangement to evaluate the packet delivery ratio. The
simulation explores the difference between wideband spread
spectrum (LoRa-like) and an ultra narrowband (Sigfox-like)
networks [13]. M. Centenaro et.al deployed a LoRa network in
the real world and proved the feasibility of complementing IoT
networks with long-range radio links [14]. SCALECycle was
designed to solve intermittent and varying coverage problem
using a mobile agent actively collecting data [15]. Y. Al Mtawa
et.al proposed an algorithm to identify the holes in an IoT
deployment.

Among radio propagation based simulations, a number of
models are proposed to provide path loss estimation used
for higher network layer simulation, such as ITM, Hata, and
ITWOM [17], [18]. S. Kasampalis et.al demonstrated that
ITWOM, though not perfect, gives more accurate results than
previous models within a radius of 20 Km [17]. However,
to our knowledge, there is no known simulation using demo-
graphic information to generate the test points; test points have
been generated at random from uniform distributions.

Finally, one novel solution to solve IoT connectivity prob-
lem is to utilize people’s smartphone as a public gateway
device, as proposed by T. Zachariah et.al. The so-called



Universal Gateway can be implemented using Bluetooth Low
Energy (BLE) on personal smartphones to remove the re-
striction that one IoT device has to connect to one specific
smartphone to communicate with the Internet. Financial or
other incentives can be used to increase user participation. We
borrow this idea and explore the participation rate needed to
achieve regional network coverage in csLPWANSs.

III. PLANIT, REALISTIC LPWAN PLANNING

Estimating wireless coverage is a challenging problem. The
most basic approach is to assume that the wireless devices
are uniformly distributed in a square and the terrain is flat
with only free-space path loss [13]. These are obviously not
realistic assumptions. Since many IoT devices are designed
to assist or improve human activities, it is reasonable to
assume that their deployment shares similar characteristics as
local demographic information. For instance, a city is more
likely to have a dense deployment of IoT devices than a
rural region. Therefore, a uniform distribution of test points
does not represent the realistic deployment of human-centric
IoT devices, thus reducing the credibility of these network
simulation results.

Our approach in Planlt is to select potential IoT device
locations (Section III-A) within a region that reflects the local
demographic characteristics. From the generated locations, we
randomly select a subset to be crowd-sourced gateway devices.
Then we use the Irregular Terrain with Obstructions Model
ITWOM) 3.0 to compute the path loss from each device to
every gateway (Section III-B). If there is a gateway device
within the link budget of the radio, a network connection
is possible. The link loss information can then be used in
a network simulator to produce realistic packet errors.

A. Selecting IoT Device Locations

Given longitude = and latitude y, the probability of an
IoT device is Pror(x,y), where Pr,r is the joint probability
function defining the probability of all IoT devices. For a given
region §2, fQ Pror(x,y)dzdy = 1. Planlt can consider several
factors that can affect Pro7:

« population density, p(x,y),

« geographic-related information, such as g(z,y) for topo-

logical effects,

o and demographic-related information, I, such as the in-

fluence of average age or income on IoT device use.

For simplicity, we define the adverse effect of topography
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Although in the real world these functions are continuous
given a large region and population, for computational sim-
plicity, we compute discrete values over a small interval.

To generate random IoT test points based on the probability
distribution Pr,p, we will use the tiles when computing Pr,p.
For tile (x,y), Pror is locally uniform, hence we can easily
generate random points in the tile. For those boundary tiles,
additional caution should be taken as we might generate points
outside the region. If it is the case, we can simply discard these
points.

By correctly choosing G and d, we can realistically ap-
proximate the probability function describing the IoT device
locations. Below is a demonstration of how we generate IoT
locations given population and geographic information. We
choose p(z,y) = 50((x — 0.5)% + (y — 0.5)2)71, Q =
(0.1) x (0,1), glz,y) = ((x — 03)"% + (y — 0.3)1%)"L,
For illustration purpose we choose G =< 20,20 >. The
first maps in Figure 1 show the probability density map of p,
G- <%, g—z>, and P;,r. These functions are chosen to model
a situation where population is centered at a city nearby a
mountain. As we can see, the raw population is centered at
the city yet influenced by the existence of the mountain, as
indicated the dark corner in P, density map. As a result, the
IoT device location map reflects the population distribution in
the P, density map.

To select points in the United States, Planlt uses demo-
graphic data from the U.S. Census 2010 Summary File 1
(SF1) [19] to estimate the population density (p). Census data
is provided in several hierarchical levels from course to fine-
grained: State, County, Subdivision, Place, Tract, Block group,
and Block. For csLPWAN planning, we want to estimate
network coverage over entire census-designated places. These
census-designated places include cities, towns, boroughs, dis-
tricts, municipalities, and townships. To further refine the test
points within a place, we use data from one level down the
hierarchy and break each place into the underlying census
tracts. Each census tract has a distinct population density that
is used to bias the sampling of points within the place.

As a real-world example, we consider the city of Philadel-
phia, Pennsylvania. Philadelphia is the most populated city
among Pennsylvania’s 57 cities with 1.526 million inhabitants
as of the 2010 census. The city covers 365 square kilometers
and is divided into 381 census tracts. Each census tract is
fully contained within the city. We use the point selection al-
gorithm considering only population density without any other
geographic-related information (topological or demographic
effects) to generate 1,000 test points in Figure 2a. Visually
we can see the test points are not uniformly distributed.
Some census tracts have multiple test points while others
have no test points at all. The distribution of land area and
the population of the census tracts are shown in Figure 2b.
From this we can see there are 10 census tracts with fewer
than 1,000 inhabitants and the majority of census tracts are
smaller than 3 square kilometers. The census tracts without
any sample points require further investigation. The large
area near (—75.20°,40°) contains Fairmount Park, a large
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Fig. 1. Probability density map of p(z,y), G - <g—g, g—z>, and Pr,7. Notice the change of the map at bottom left corner due to geographic information.
The right plot shows the 2500 IoT device locations generated based on Pr,7.
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Fig. 2. The data from 1,000 test points generated for the city of Philadelphia,
Pennsylvania containing 381 census tracts.

urban park surrounding the Schuylkill River containing the
Philadelphia Zoo and several other museums. The areas to
the south are industrial zones with rail and shipyards to
access the Delaware river. The area in the northeast contains
the appropriately named Northeast Philadelphia Airport (the
International airport, PHL, is outside of the city limits). With
these facts in mind, the point distribution does closely follow

Parker
o,
%
5t}
41.15f ol
el
%
%
o
vh
A
41101
41.05F
41.00
40.95
40.90
-79.80  -79.75  -79.70  -79.65 -79.60  -7955  -79.50

Fig. 3. The locations of 1,000 sample points generated for the city of Parker,
Pennsylvania (red) and Armstrong County Census Tract 9503 (blue).

the population distribution.

When considering other cities in Pennsylvania, we found
that census tracts are not always fully contained within a city
boundary as in Philadelphia. There are some cases when a
city is contained within a census tract and the census tract
is larger than the city. This is a common phenomenon when
examining smaller census-designated places. The smallest city
in Pennsylvania, Parker, falls into this category. In these
cases, we select points within the census tract using a normal
distribution with mean at the centroid of the city and standard
deviation % of the smallest distance from the city centroid to
the bounding box created by the census tract, so there are at
least three standard deviations to the nearest border. The goal is
to generate points near the city center while still spanning the
entire census tract with some probability. Any point generated
outside of the census tract is rejected and a new random point
is drawn. The resulting test points for Parker, Pennsylvania
are shown in Figure 3. This shows the desired clustering of
points near the city (red) while still representing the entire



census tract (blue).

B. Path Loss Estimation

From a set of generated test points in a city or other
region, we randomly select n points to be crowdsourced
base stations. Because the test points were generated using
population density and possibly other information, the selected
base stations will also share this distribution. Then we compute
the path loss from each point to all of the base stations using
the Irregular Terrain with Obstructions Model ITWOM) 3.0.
This model improves on the Longley-Rice (ITM) model and
estimates path loss taking into account topographic and ground
clutter information. Although these models were developed
for predicting DTV and FM broadcast coverage, they can also
applied to the ISM frequency bands.

Topographic information for the model was obtained from
the Shuttle Radar Topography Mission (SRTM) dataset with 1
arc-second resolution (approximately 30-meter resolution on
the ground). This data has been previously shown to have
good accuracy [20]. For each source/destination pair, the line
of sight geodesic path is constructed by taking not more than
30-meter steps, to match the SRTM data resolution, from
the source to the destination until reaching the destination.
The final point along the path is always the destination. The
elevation at each point is along the path is retrieved from the
SRTM dataset. Before passing to the ITWOM library, if there
are any negative elevation values, the entire path is shifted
up by the absolute value of the most negative point so the
minimum elevation is zero to prevent errors in the path loss
calculation.

The complete set of ITWOM parameters are listed in
Table I. The values for dielectric constant and conductivity are
typical for a city environment. The transmitter height was set
to 5 meters above ground level (AGL) which is easily reached
from the roof of a 1-story building. The receiver height was
set to 1 meter AGL to represent a device near ground level.
Because of the reciprocity principle, it is irrelevant whether
the IoT device or base station is the transmitter for path loss
estimation.

TABLE I

ITWOM PARAMETER VALUES USED TO COMPUTE PATH LOSS.
Parameter | Value
Transmitted Height 5 meters
Receiver Height 1 meter
Earth Dielectric Constant 5.0 (city)
Earth Conductivity 0.001 (city)
Atmospheric Bending Constant | 301.0
Frequency 900 MHz
Polarization Horizontal
Location Variability 50%
Time Variability 50%

Using these parameters, we generate 100 sets of 1,000
test points and randomly select {1...b} points from each
set to act as base stations, then compute the path loss from
all points to every base station keeping only the lowest loss
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(a) Path loss in Philadelphia, Pennsylvania.
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(b) Path loss in St. Marys, Pennsylvania.

Fig. 4. The path loss distribution from 100 rounds of evaluating 1,000 test
points with randomly assigned base station nodes in two Pennsylvania cities.
The dashed line at 158 dB indicates the threshold for reception.

path. Figure 4a shows the path loss distribution for Philadel-
phia, Pennsylvania along with a hypothetical 158 dB receive
threshold. This threshold was selected as a fair estimate from
available LPWAN radio specifications which vary from 149
to 175 dB. This shows that a single randomly located base
station has a very good chance of providing connectivity to
most of Philadelphia with median path loss of 130 dB. This
result is somewhat surprising and we should keep in mind
that ITWOM only considers the elevation data measured from
space provided by the SRTM dataset. It is possible that the
reported elevations reflect the top of buildings, especially in
a dense city, resulting in urban canyon effects on the surface.
However, this result gives us confidence that csLWPANSs can
cover a large population using very few base stations.

Analyzing other cities in Pennsylvania yields similar results
to Philadelphia. Figure 5 shows the estimated connectivity
using one base station and a 158 dB receive threshold for
every city in Pennsylvania. The median connectivity is 99.2%
and in all but two cities the median connectivity is greater
than 90%. The worst performing city in Pennsylvania is St.
Marys, shown in Figure 4b. Investigating St. Marys reveals
although classified as a city, it is a geographically large area
of nearly 100 square miles in the Allegheny Mountain region
spanning an elevation range of more than 250 meters. For
comparison, Philadelphia covers 141 square miles but only has
an elevation range of 100 meters with more gradual elevation
changes. These two factors combine to yield a challenging
region to cover.
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IV. DQ-N FOR CSLPWANS

From our work with Planlt (Section III), we believe csLW-
PANs are a promising approach to provide low-rate IoT
network coverage utilizing very few base stations. In the
extreme case, 98% of Philadelphia’s 1.526 million inhabitants
could connect to a single base station. For a low data rate
network with simple base stations, basic connection overhead
alone could cripple the network with this many users. Our
approach is to reconsider the use of contention-based media
access control protocols in favor of a distributed queuing-
based approach that we call DQ-N that to better support highly
utilized networks.

Distributed queuing (DQ) is a hybrid media access con-
trol protocol where the coordinator broadcasts contention-free
transmission queue values to individual devices in response
to contention-based transmission requests. In contrast to other
media access approaches, the coordinator maintains minimal
information about the network and is only responsible for
processing and broadcasting the results of the contention
resolution process. Each device in the network maintains two
queue lengths, namely the contention resolution queue (CRQ)
and data transmission queue (DTQ). Using only this informa-
tion, devices can compute contention-free transmit times in a
fully distributed fashion. Although DQ can be implemented in
the frequency domain, this paper focuses on the time domain
as we plan to exploit different frequency channels to increase
network capacity.

To request a data slot using DQ, the device independently
chooses a minislot from {0,1,...,m — 1} at random and
then sends a TR at that chosen minislot in the next frame.
Since there may be many devices attempting to transmit
simultaneously and there are a fixed number of minislots, a
contention may occur at that chosen minislot. The base station
provides contention information in the feedback. If contention
occurs in a TR minislot, each contending device enters the
CRQ. If a TR is successful (no contention) the device enters
the DTQ. To calculate the device’s CRQ position, the minislot
states provided in the feedback are scanned from lowest index
to highest index. If a contention is indicated in a occurs in a
minislot, the device increases the current CRQ length by 1.
The scanning process continues until the device reaches its

requested minislot index. The value obtained by this process
is the position of the device in the CRQ. Devices in the CRQ
backoff for the computed CRQ number of frames and repeat
the TR process. Analogously, the position of DTQ is calculated
by scanning success states in the feedback and incrementing
the base DTQ value accordingly. Devices in the DTQ wait
for the indicated data slot and then communicate without
contention.

An important feature of DQ is that once the CRQ and DTQ
values are computed, the device can switch to sleep mode
to save energy and wake up at the scheduled time to transmit
data. There is no need to continuously sense the network traffic
load. This is an advantage to the IoT domain where channel
sensing typically consumes significant device energy [21]. If a
device detects that both CRQ and DTQ are empty, it may use
any unused data slot, accepting the possibility of contention.
This behavior is similar to slotted ALOHA and reduces the
latency significantly when the network load is low.

Figure 6a shows the DQ frame structure where the channel
is divided into multiple fixed-length frames containing: 1) m
minislots for transmission requests (TRs), 2) a contention-free
data transmission slot, 3) and a feedback slot.

Because current LPWAN radios use relatively small packet
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Fig. 6. The frame structure for DQ and DQ-N.
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sizes, the data slot size is constrained by the maximum radio
packet size in practice. As the TR and feedback messages are
overhead, the overall protocol efficiency with small data slots
is low. The goal of DQ-N is to support /N data transmission
slots between each TR and feedback message. Figure 6b shows
the modified DQ-N frame structure. As a result of this change,
the overall protocol efficiency can be tuned by varying V.

The benefit of DQ-N is that contention is reduced by the
coordinator broadcasting feedback containing the current CRQ
and DTQ length as well as TR results. The TR results consist
of an array of states for each of the minislots, namely, idle,
success, and contention and the number of data slots requested.
This information is used to compute the queue position at
each node by scanning the results for each TR in the same
way as in DQ but now incrementing the DTQ queue length
by the number of requested data slots. If a device wants to
minimize latency in a network with multiple base stations,
before transmitting a TR, it can first sense the load of each
base station by receiving a feedback message containing the
CRQ and DTQ lengths. The device can then send it’s TR to
the channel with shortest queue length.

To enable downstream messages in DQ-N, we add a flag to
the feedback message to indicate if there are downstream pack-
ets pending for a device after a successful TR. After seeing
this flag, the device will complete the upstream transmission
and then request a downstream data slot by transmitting a
receive request (RR) message in a random minislot. The RR
protocol is the same as the TR, however, at the assigned data
slot the base station transmits the data. Additionally, at any
time a device can send a receive request (RR) message to
contend for downstream data slots even if it has not seen a
downstream flag.

A. Analysis

The contention resolution algorithm of DQ is a tree splitting
algorithm. All devices that transmit a TR in the same minislot
will compute the same CRQ value and hence occupy a com-
mon branch in the contention tree. We can use this to calculate
the expected waiting time in the system for a transmission
burst. Figure 7 shows the expected number of frames required
to resolve a burst of transmission request versus the number of
nodes in the burst using DQ with m = 3. This is an important

property for IoT applications as it improves the stability of the
system during bursty loads.

For further analysis, since DQ-N supports requesting multi-
ple data frames in each TR, it is reasonable to assume the total
number of requested data slots per TR forms a distribution
with mean value \ and standard deviation o,. Accordingly, we
compare DQ-N to an M/G/1 queue with input ratio p = A/N.
The following list defines constants used in the analysis of
DQ-N:

p : server utilization (traffic load).
N : number of data slots per frame.
m : the number of minislots per frame.
A : average number of data slots per TR.
o, : standard deviation of data slots for each TR.
o, : standard deviation of service time.
~ : average number of TR per frame.

By Little’s Law and the Pollazcek-Khintichine formula, the av-
erage delay time in DQ-N based M/G/1 queue is:Wy; /1 =

Ly | A _ Mal+p? | A 2 _ 2772
TR =Sy T & Where o = o2/N=. If we know the

the expected value of A and o, is relatively small compared
to IV, we can choose the number of mini-slots based on A, as
given in Theorem 1.

Theorem 1. It takes no more than n frames to resolve \n
TRs if m > v+ 1.

Proof. Since each unit time the server can process /N data
slots, one can show that it is sufficient to prove that
Lixn+ry/n < 1+ Lxpy/n. Hence it is equivalent to show

n—1

Lnt1 < & + L,,. According to DQ theory we need 25— <

mn—1 —

. n—1 . .
% = % Since 57— is monotonically decreasing, and
m >y +1, < %, as desired. O

mn—1
mn—1

B. Simulation

To simulate the performance of DQ-N, we first use Planlt to
generate device locations in three counties in central Pennsyl-
vania, namely Union, Northumberland, and Snyder County.
The test area covers 2,976 km? with a population of 180
thousand. 5,000 locations are randomly drawn based on the
procedure discussed earlier. We filter out any locations with
a negative signal to noise ratio (SNR), as those devices are
unlikely to transmit to or receive from any valid information
with the base station. We also assume each device communi-
cates to the base station with the lowest path loss. The path
loss values are converted to bit error rate (BER) for use in
simulation using the following equations.

SNR=TI+GT - NJ—-L+G—-NF

E
7b =SNR— 10[0\910(%)

N,
0 1E,

1
BER = 3¢ 2 No

The meanings and values of the parameters are listed in Table
1L



For the base station transmitter, we use % Watt as the
transmitter power and 200 ms for the duration of the time
slot, to comply with FCC regulations for frequency hop-
ping systems in the 900 MHz band. We select 1200 bps
datarate and 12.5 KHz channel bandwidth to improve receiver
sensitivity and therefore increase the effective range. The
remaining transceiver parameter values are obtained from the
TI CC1120 and CC1190 narrowband transceiver and range
extender datasheets [22].

TABLE 11
PARAMETERS USED TO CALCULATE BER
Name Value
RF power delivered to the transmitter (TI) -3 dBW
Transmitter antenna gain (GT) 3 db
Johnson Noise (NJ) -114 dbW
Path loss (L) Computed by Planlt
Receive antenna gain (G) 3 db
Receiver noise figure (NF) 7 db
Channel data rate (fp) 1200 bps
Channel bandwidth 12.5 KHz
PHY model BPSK

For comparison, we also simulate P-persistent CSMA, ideal
TDMA, and LPDQ in addition to DQ-N. These protocols are
chosen because they form the basis for many popular MAC
layer protocols. P-persistent CSMA operates like traditional
CSMA but a node only transmits on idle channels with
probability P (we use P = 0.001) to reduce contention. Ideal
TDMA assumes a static round-robin transmit schedule for
all nodes. LPDQ is a previous implementation of distributed
queuing for low-power wireless networks. DQ-N improves
upon LPDQ by scheduling multiple data slots per frame
resulting in reduced protocol overhead for the short frame sizes
common in LPWAN systems and supporting both upstream
and downstream traffic.

We performed two different simulations, the ideal case
without packet loss and a realistic case with packet loss caused
by the path loss predicted by Planlt. For both cases, we
generate sufficient upstream traffic to saturate the network
evenly distributed among all of the nodes (e.g., if there are 100
nodes and 1,200 bps available upstream bandwidth, each node
would generate 12 bps of upstream traffic) and then sample the
network utility and latency after a warm up period. Network
utility is defined as the ratio of successfully received data with-
out contention or corruption versus the available bandwidth.
The latency is defined as the time from when a node begins
to send a packet to the time when a base station successfully
receives it, thus including the contention and waiting time. No
re-transmissions are used in the simulations as such effort will
confound the simulation results and typically belongs to upper
layer protocols. We also measure the duty cycle for each node
to demonstrate the energy intensity of each protocol.

Transmitted packet sizes are selected from a normal distri-
bution with a mean of 240 bytes and standard deviation of
120 bytes. Since the total available bandwidth is 1,200 bps
and the maximum time slot is 200 ms, each data slot contains
30 bytes of data. We choose N = 16 and m = 8 for the DQ-

N parameters. We also subtract the protocol overhead when
calculating maximum channel utility, therefore use 0.94 for
DQ-N and 0.8 for LPDQ which saturates the network using
these parameters.

-
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(b) Simulation results for the realistic environment.

Fig. 8. LPWAN network simulations for saturated networks.

Figure 8a shows the simulation results for an ideal environ-
ment where there is no packet loss. In this case, DQ-N achieves
similar performance to LPDQ but demonstrates lower latency.
However, since DQ-N reduces protocol overhead, it has higher
channel utility.

Figure 8b shows the simulated utility and delay considering
packet loss. The latency for all protocols except TDMA
increases when compared to the idea case. The channel utility
for all protocols is reduced due to packet loss. For DQ-N
and LPDQ, in addition to lost data messages, a lost TR or
feedback message may result in an unscheduled data slot,
further reducing utility. However, DQ-N still outperforms
LPDQ and P-CSMA in terms of channel utility and latency.

Figure 9 shows the radio duty cycle distribution in the
realistic environment with 2,500 nodes. Although TDMA
exhibits the optimal duty cycle (1/2500), it is not practical as
the number of nodes has to be fixed and dynamically changing
the TDMA schedule requires a more complex protocol. Never-
theless, the simulation shows the improvement of DQ-N over
LPDQ as it eliminates the need for nodes to make multiple
TRs for messages longer than one data slot.

V. CONCLUSION AND FUTURE WORK

In this paper, we consider crowdsourced low-power wide-
area networks (cSLPWANSs). A ¢csLPWAN is a LPWAN where
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Fig. 9. Radio duty cycle in the realistic environment.

a subset of users provide base stations without coordinating the
location of the base stations. To better understand csLPWAN
behavior, we have created a csLPWAN network planning
tool, Planlt. Planlt combines topographic and demographic
information to give a more realistic representation of real-
world csLPWAN connectivity. Using Planlt, we found the
median connectivity over all cities in Pennsylvania was 99.2%
from a single randomly located base station within each city.
Using the path loss data from Planlt, we have also simulated
and compared the efficiency of different LPWAN protocols. To
simplify csLPWAN gateways and improve network utilization,
we have designed and analyzed DQ-N, an extension of the
DQ protocol optimized for highly utilized low-rate csLPWAN
networks. By presenting mathematical analysis and numeric
simulation results, we show the superior performance of
DQ-N and demonstrate the ability of a single DQ-N base
station to support thousands of nodes in a csLPWAN. We
believe these results will help catalyze the deployment of
future csLWPAN networks. We are currently developing a
low-cost base station to support networks of thousands of
LoRa devices using the DQ-N protocol. More information on
this work and a web-based version of Planlt are available at
http://cslpwan.me.
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